

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível:

Mestrado

Doutorado

Disciplina: Gerência de Produção I

Semestre: 2020/1 Carga horária: 45h/a - Créditos: 03

Professor: José Antônio Valle Antunes Júnior Código da disciplina: 092411 / 115539

EMENTA

Sistema Toyota de Produção (STP) para a construção de sistemas de produção com estoque zero, também chamados de Sistemas de Produção "Enxutos". Conceitos relacionados aos dois pilares de sustentação do STP, a saber, Autonomação e Just In Time, vinculado a outros conceitos como: perdas, mecanismo da função produção, manutenção produtiva total, troca rápida de ferramentas e Poka-Yoke.

CONTEÚDO PROGRAMÁTICO

A compreensão do ambiente competitivo globalizado a partir de uma perspectiva histórica; Os Paradigmas em Engenharia da Produção a partir das Revoluções Industriais — Paradigmas da Melhoria nas Operações e no Processo; os Princípios Gerais de Construção dos Sistemas Produtivos Enxutos; os subsistemas necessários para a construção de sistemas de produção competitivos, tendo como pano-de-fundo a produção enxuta, a partir de uma visão sistêmica; as principais técnicas associadas aos subsistemas que constituem a produção enxuta.

Ambiente, Normas de Concorrência e Dimensões da Competição: Do Taylorismo/Fordismo ao Sistema Toyota de Produção/Produção Enxuta;

Engenharia de Produção, o Conceito de Empresa, as Dimensões da Competição e os Custos dos Fatores de Produção: EUA, Japão, Europa, China, Brasil;

Conceitos Básicos em Engenharia de Produção: Produtividade, Qualidade, Gargalos/CCRs, Tempos (Tempo de Ciclo, Tempo de Atravessamento, *Takt-Time* etc...)

Princípios Básicos de Construção dos Sistemas Produtivos: Mecanismo da Função Produção, Perdas; Os Dois Princípios Básicos do Sistema Toyota de Produção e seus Desdobramentos: Autonomação e *Just-In-Time*;

As Melhorias na Função Processo: Unidade de Negócios, Macroleiaute Fabril, Fábricas Focalizadas, *Takt-Time*;

As melhorias na Função Processo: Kanban, Controle de Qualidade Zero Defeitos, Poka-Yoke;

As Melhorias na Função Operação: TPM; e Troca Rápida de Ferramentas;

A Micro Economia da Firma, O Conceito de Tecnologia e a Construção de Sistemas de Produção Enxutos;

O Método e sua relação com os Sistemas de Produção Enxuto; Exemplo do Método da Gestão Integrada/Unificada, Sistêmica e Voltada aos Resultados: A Gestão do Posto de Trabalho;

Exemplificando as Aplicações e Construções de Sistemas de Produção Competitivos: Dois Casos em Empresas do Ramo Metal-Mecânico

O Nascimento do Lean – Conversas com TaiichiOhno, EijiToyoda e Outras Pessoas que deram Forma ao Modelo Toyota de Gestão (Shimokawa e Fujimoto)

Abordagem Lean: Womack & Jones, Liker & Meier etc...

Novos Tópicos Associados ao Sistema Toyota de Produção: A Toyota, Modelo de Negócios e Aprendizagem (Osono, E., Shimizu, N. e Takeuchi, H. – Relatório Toyota)

Abordagens Críticas do Sistema Toyota de Produção: Fujimoto, Coriat, Gounet

AVALIAÇÃO

A avaliação da presente disciplina será composta das seguintes partes:

- ♦ Apresentações de resenhas críticas e participação em aula 10%;
- Produção de um artigo técnico, utilizando o padrão adotado no Congresso do ENEGEP (2 pessoas) 30%
- ◆ Produção de um artigo técnico no intuito de submeter a uma Revista A Nacional de acordo com os padrões da mesma (em grupo de até 3 pessoas) – 30 %;
- ◆ Apresentação de trabalho em sala de aula versando sobre temas previamente selecionados 30%.

BIBLIOGRAFIA BÁSICA

ABDULNOUR, G.; DUDEK, R. A.; SMITH, M. L. Effect of maintenance policies on the just-in-time production system. **International Journal of Production Research**, Beijing, v. 33, n. 2, p. 565-583, 1995.

ALBINO, V.; CARELLA, G.; OKOGBAA, G. Maintenance policies in just-in-time manufacturing lines. **International Journal of Production Research**, Beijing, v. 30, n. 2, p. 369-382, 1992.

- ALVAREZ, R. R. Apresentação e análise comparativa do processo de pensamento da TOC e do mecanismo do pensamento científico. *In*: ENCONTRO DA ASSOCIAÇÃO NACIONAL DE PROGRAMAS DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO, 19., 1995, João Pessoa. **Anais...** João Pessoa: Anpad, 1995. p. 168-185, v. I, n. 7.
- ALVAREZ, R. R. **Desenvolvimento de uma análise comparativa de métodos de identificação, análise e solução de problemas**. 1996. Dissertação (Mestrado em Engenharia de Produção) Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal do Rio Grande do Sul UFRGS, Porto Alegre, RS, 1996.
- ANSELMO, P. **Os circuitos da autonomação**: uma abordagem técnico-econômica. 2004. Disssertação (Mestrado em Engenharia de Produção) Programa de Pós-Graduação em Engenharia de Produção. Universidade do Vale do Rio dos Sinos UNISINOS, São Leopoldo, RS, 2004.
- ANTUNES, J. A. V. A lógica das perdas nos sistemas de produção: uma análise crítica. *In*: ENCONTRO DA ASSOCIAÇÃO NACIONAL DE PROGRAMAS DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO, 19., João Pessoa, 1995. **Anais...** João Pessoa: Anpad, 1995. p. 357- 371, v. 1, n. 7.
- ANTUNES, J. A. V. Considerações sobre a concorrência intercapitalista a filosofia just-in-time e o controle sobre os trabalhadores. **Revista Análise**, Porto Alegre, v. 1, n. 3, p. 257-275, 1990.
- ANTUNES, J. A. V. *et al.* **Sistemas de produção**: conceitos e práticas para projeto e gestão da produção enxuta. Porto Alegre: Bookman, 2008.
- ANTUNES, J. A. V. O mecanismo da função da produção: a análise dos sistemas produtivos do ponto-de-vista de uma rede de processos e operações. **Revista da Produção**, Porto Alegre, v. 4, n. 1, p. 33-46, 1994.
- ANTUNES, J. A. V; ALVAREZ, R. R. Fábricas focalizadas: um estudo de caso. *In:* ENCONTRO DA ASSOCIAÇÃO NACIONAL DE PROGRAMAS DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO, 19., João Pessoa, 1995. **Anais...** João Pessoa: Anpad, 1995. p. 205-223, v. 1, n. 7.

BIBLIGRAFIA COMPLEMENTAR:

- ANTUNES, J. A. V. Em direção a uma teoria geral do processo na administração da produção: uma discussão sobre a possibilidade de unificação da teoria das restrições e da teoria que sustenta a construção de sistema da produção com estoque-zero. 1998. Tese (Doutorado em Engenharia de Produção) Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal do Rio Grande do Sul UFRGS, 1998.
- ANTUNES, J. A. V.; LIMA, L. Estratégia de focalização: uma realização do setor industrial passado para o setor de serviços. *In*: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 12., São Paulo, 1992. **Anais...** São Paulo: Anpad, 1992. p. 88-95.
- ANTUNES, J. A. V.; LINDAU, L. A.; BRUSCH, L. Qualidade e produtividade: experiência de aplicação em uma empresa operadora brasileira de transporte coletivo de ônibus. *In*: CONGRESSO

PANAMERICANO DE INGENIERIA DE TRANSITO Y TRANSPORTE, 17., Caracas, Venezuela, 1992. **Anais...** Venezuela: UANDES,1992. p. 15.

ANTUNES, J. A. V.; RODRIGUES, L. H. A teoria das restrições como balizadora das ações visando a troca rápida de ferramentas. **Revista Produção**, Porto Alegre, v. 3, n. 1, p.73-86, 1993.

BALLÉ, F.; BALLÉ, M. **The gold mine**: a novel of lean turnaround. Cambridge: Lean Enterprise Institute, 2005.

BARTEZZAGHI, E.; TURCO, F. The impact of just-in-time on production system: an analytical framework. **International Journal of Operations and Production Management**, Bingley, v. 9, n. 9, p. 40-61, 1989.

BERCHT, M. **Plano agregado estratégico de produção**. 1996. Dissertação (Mestrado em Engenharia de Produção) -- Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, 1996.

BLACK, J. T. O projeto da fábrica com futuro. Porto Alegre: Bookman, 1998.

BUFFA, E. S. Modern production management. Santa Barbara: John Wiley & Sons, 1977.

CERONI, S.; ANTUNES, J. A. V. Implantação do sistema 'Kanban' e o gerenciamento de seus pressupostos básicos: um estudo de caso. *In*: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 14., 1994, João Pessoa, Paraíba. **Anais...** Paraíba: Abepro, 2008. p. 595-600, v. 1.

CERONI, S.; ANTUNES, J. A. V. O sistema kanban e a flexibilidade da produção: um estudo de caso. *In*: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 15., 1995, São Carlos, São Paulo. **Anais...** São Paulo: Abepro, 1995. p. 1525-1529, v. 3.

CHASE, R. B. A classification and evaluation of research in operations management. **Journal of Operations Management**, Amsterdam, v. 1, n. 1, p. 9-14, Aug. 1980.

CHASE, R. B.; AQUILANO, N. J. **Production and operation management**: manufacturing and services. 7nd ed. Chicago: Irwin, 1995.

CHASE, R. B.; PRENTIS, E. L. Operations management: a field rediscovery. **Journal of Management**, New York, n. 13, p. 351-366, 1987.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível:

Mestrado

Doutorado

Disciplina: Gestão do Valor Agregado

Semestre: 2020/1 Carga horária: 45 h: - Créditos: 03

Professor: Giancarlo Medeiros Pereira Código da disciplina: 115524 / 108391

EMENTA

Abordagens para a melhoria da oferta e entrega de valor agregado por organizações industriais e de serviços atuantes nos mercados B2B (business-to-business, ou entre empresas) e B2C (business-to-customers, ou entre empresa e consumidor). Aspectos tecnológicos, culturais, demandas geográficas, organizacionais, colaborativos, personalização/massificação de oferta e o desenvolvimento de novos produtos/serviços.

CONTEÚDO PROGRAMÁTICO

Os estudos de caso a serem desenvolvidos poderão abarcar alguns dos temas a seguir descritos, bem como outros temas emergentes de interesse dos alunos (desde que esses temas se alinhem com os objetivos da disciplina):

- Alternativas para a agregação de valor por meio do incremento da sustentabilidade corporativa;
- Alternativas para a agregação de valor por meio da prestação de serviços industriais por parte das indústrias;
- Alternativas para a agregação de valor por meio do aprimoramento das operações internas;
- Alternativas para a agregação de valor por meio do uso de novas tecnologias, especialmente aquelas associadas ao mundo digital; e/ou
- Alternativas para a agregação de valor por meio da relação com parceiros de outros setores empresariais.

OBJETIVOS

 Desenvolver a capacidade de compreensão dos conceitos relacionados à gestão do valor agregado em operações B2B e B2C.

- Desenvolver a capacidade de proposição de alternativas para a gestão do valor agregado em organizações industriais e de serviços.
- Desenvolver competências conceituais e aplicadas afetas à gestão do valor agregado nas organizações.

Estudo de caso desenvolvido a partir da análise das lacunas emergentes da literatura. Esse estudo é desenvolvido em ambiente laboratorial sob a supervisão dos docentes.

AVALIAÇÃO

Trabalho escrito acerca das alternativas para o incremento da agregação de valor inovadoras que foram identificadas.

BIBLIOGRAFIA BÁSICA

EGGERT, A.; KLEINALTENKAMP, M.; KASHYAP, V. Mapping value in business markets: an integrative framework. **Industrial Marketing Management**, [s. l.], v. 79, p. 13-20, 2019.

MCCOLL, R.; TRUONG, Y.; LA ROCCA, A. Service guarantees as a base for positioning in B2B. **Industrial Marketing Management**, [s. l.], v. 81, p. 78-86, 2019.

RITTER, M.; SCHANZ, H. The sharing economy: a comprehensive business model framework. **Journal of Cleaner Production**, [s. l.], v. 213, p. 320-331, 2019.

SCHENKEL, M. *et al.* Vicious cycles that hinder value creation in closed loop supply chains: experiences from the field. **Journal of Cleaner Production**, [s. l.], v. 223, p. 278-288, 2019.

YLIJOKI, O.; PORRAS, J. A recipe for big data value creation. **Business Process Management Journal**, [s. l.], v. 25, n. 5, p. 1085-1100, 2019.

BIBLIOGRAFIA COMPLEMENTAR

CANNING, L.; SZMIGIN, I. Radical innovation, network competence and the business of body disposal. **Journal of Business and Industrial Marketing**, [s. l.], v. 31, n. 6, p. 771-783, 2016.

ESSIG, M. *et al.* Performance-based contracting in business markets. **Industrial Marketing Management**, [s. l.], v. 59, p. 5-11, 2016.

KOWALKOWSKI, C.; GEBAUER, H.; OLIVA, R. Service growth in product firms: past, present, and future. **Industrial Marketing Management**, [s. l.], v. 60, p. 82-88, 2017.

MOLIN, J.; ÅGE, L.-J. Business streamlining - an integrated model of service sourcing. **Journal of Business and Industrial Marketing**, [s. l.], v. 32, n. 2, p. 194-205, 2017.

NAGY, D.; SCHUESSLER, J.; DUBINSKY, A. Defining and identifying disruptive innovations. **Industrial Marketing Management**, [s. l.], v. 57, p. 119-126, 2016.

STORY, V. M. *et al.* Capabilities for advanced services: a multi-actor perspective. **Industrial Marketing Management**, [s. l.], v. 60, p. 54-68, 2017.

VALTAKOSKI, A. Explaining servitization failure and deservitization: a knowledge-based perspective. **Industrial Marketing Management**, [s. l.], v. 60, p. 138-150, 2017.

YEN, Y.-X.; HUNG, S.-W. The influences of suppliers on buyer market competitiveness: an opportunism perspective. **Journal of Business and Industrial Marketing**, [s. l.], v. 32, n. 1, p. 18-29, 2017.

Programa de Pós-Graduação emEngenharia de Produção e Sistemas

Nível: ☐ Mestrado ☐ Doutorado

Disciplina: Métodos Quantitativos

Semestre: 2020/1 Carga horária: 45 h/a - Créditos: 03

Professor: André L. Korzenowski Código da disciplina: 119165

EMENTA

Estatística Não Paramétrica; Estatística Bayesiana; Técnicas Avançadas de Análise Multivariada; Sistemas de Equações Estruturais; Mineração de Dados.

CONTEÚDO PROGRAMÁTICO

1. Análise de dados por meio de técnicas tradicionais da estatística clássica: Testes de hipóteses, modelos lineares, análise de clusters e análise fatorial exploratória.

2. Ciências de dados: associationrules, redes neurais artificiais, linear support vector machine e inteligência artificial com algoritmo genético.

CRONOGRAMA

06/03 - Introdução ao R 22/05 - Linear Suporte Vector Machine

20/03 - Testes de hipóteses 29/05 - Algoritmo Genético

27/03 - Modelos Lineares 05/06 - Aplicações

03/04 - Análise de Cluster 19/06 - Plano de trabalho

17/04 - Análise Fatorial Exploratória 26/06 - Desenvolvimento da solução

24/04 - Revisão 03/07 - Validação dos resultados

08/05 - Association Rules 31/07 - Entrega do trabalho

15/05 - Redes Neurais Artificiais

AVALIAÇÃO

A avaliação consiste em:

30% - Resolução de Problemas solicitados na plataforma Moodle

60% - Desenvolvimento de um projeto de data science

BIBLIOGRAFIA BÁSICA

HAIR Jr., J. F. et al. Análise multivariada de dados. 6. ed. Porto Alegre: Bookman, 2009. 688p.

HAN, J.; KAMBER, M. **Data mining**: concepts and techniques. 2. ed. Amsterdam: Elsevier; San Francisco: Morgan Kaufmann, 2006. 770 p.

PAULINO, C. D.; TURKMAN, M. A. A.; MURTEIRA, B. **Estatística bayesiana**. Lisboa: Fundação Calouste Gulbenkian, 2003. 446 p.

SIEGEL, S.; CASTELLAN Jr., N. Estatística não paramétrica para ciências do comportamento. 2. ed. Porto Alegre: Bookman, 2006. 448 p.

BIBLIOGRAFIA COMPLEMENTAR

Artigos selecionados da Base de Periódicos da CAPES

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Disciplina: Planejamento e Programação da Produção

Semestre: 2020/1 Carga horária: 45h/a - Créditos: 03

Professor: Daniel Pacheco Lacerda Código da disciplina: 092412 / 115546

EMENTA

Planejamento e programação da produção. Níveis hierárquicos de planejamento. Sincronização dos sistemas de produção. Obrigatoriedade de gerir a produção de maneira a minimizar os estoques de produtos acabados, estoques em processo, matérias-primas e ferramentas. Formas alternativas de realizar uma boa sincronização da produção.

CONTEÚDO PROGRAMÁTICO

Aula	Assunto
1	Introdução à disciplina
	Método de pesquisa de artigos para a disciplina
2	Conceitos Básicos de Administração das Operações – PCP
	Games OPT e TOC Challenge
3	TOC em Operações – TPC
	Relatório dos Games
	Processo de Focalização da Teoria das Restrições
4	Processo de Pensamento da TOC 1
5	Processo de Pensamento da TOC 2
6	Apresentação dos trabalhos (Exercício 2) sobre o Processo de Pensamento da TOC
7	TOC em Finanças
	Indicadores Globais e Operacionais da TOC
8	TOC em Projetos - Introdução
9	TOC em Projetos – O Método da Corrente Crítica
10	Apresentação dos trabalhos sobre a Corrente Crítica (Exercício 2)
11	TOC na Distribuição – O Postal Game
12	TOC e Logística

Aula	Assunto
13	TOC em Marketing/Vendas
14	TOC e Estratégia – Visão Viável
15	Apresentação dos trabalhos

OBJETIVOS

- Desenvolver a capacidade de criticar artigos científicos associados a disciplina;
- Aprofundar o conhecimento sobre Teoria das Restrições no que tange aos sistemas produtivos;
- Expor instrumentos para o processo de melhoria contínua dos sistemas produtivos (processo de Pensamento);
- Aprofundar os estudos sobre as implicações dos diferentes subsistemas organizacionais e suas implicações para o Planejamento e Controle da Produção a partir da ótica da Teoria das Restrições.

METODOLOGIA

A metodologia de ensino aprendizagem se baseia em alguns elementos. Primeiro, a análise crítica dos artigos correlatos a disciplina, o debate amplo e crítico do texto analisado e do próprio posicionamento do discente. Segundo, Aulas expositivas para consolidar os conceitos essenciais ao campo e necessários para a compreensão das pesquisas na área. Terceiro, materiais instrucionais multi-mídia (jogos, vídeos). Por fim, trabalhos de campo individuais e coletivos para o desenvolvimento das habilidades de pesquisa, senso crítico e exposição/defesa de ideias.

AVALIAÇÃO

- 10% Exercício 1: relatório do OPT Game e Peoplesoft contest
- 10% Exercício 2: desenvolvimento de uma Árvore da Realidade Atual
- 10% Exercício 3: desenvolvimento de um projeto utilizando o método da Corrente Crítica
- 70% Artigo Final: desenvolvimento e apresentação de um artigo utilizando como tema a TOC.

BIBLIOGRAFIA BÁSICA

COX, J. F.; SPENCER, M. Handbook da teoria das restrições. Porto Alegre: Bookman, 2013.

GOLDRATT, E. M. **A síndrome do palheiro**: garimpando informações num oceano de dados. São Paulo: Educator, 1996.

GOLDRATT, E. M. Corrente crítica. São Paulo: Nobel, 2003.

GOLDRATT, E. M. Mais que sorte... um processo de raciocínio. São Paulo: Educator: 1994.

GOLDRATT, E. M.; COX, J. F. A meta. São Paulo: IMAM, 1986.

GOLDRATT, E. M.; FOX, R. E. A corrida pela vantagem competitiva. São Paulo: Educator, 1989.

GOLDRATT, Eliyahu. Standing on the shoulders of giants - production concepts versus production applications the hitachi tool engineering example. **Gestão & Produção**, São Carlos, v. 16, n. 3, p. 333-343, 2009.

KIM, Seonmin; MABIN, Victoria Jane; DAVIES, John. The theory of constraints thinking process: retrospect and prospect. **International Journal of Operations & Production Management**, [s. l.], v. 28, n. 2, p. 155-184, 2008.

NOREEN, E.; SMITH D.; MACKEY, J. T. A teoria das restrições e suas implicações na contabilidade gerencial. São Paulo: Educator, 1996.

WATSON, Kevin J.; BLACKSTONE, John H.; GARDINER, Stanley C. The evolution of a management philosophy: the theory of constraints. **Journal of Operations Management**, [s. l.], v. 25, p. 387-402, 2007.

BIBLIOGRAFIA COMPLEMENTAR

ALVAREZ, R. R. **Desenvolvimento de uma Análise Comparativa de Métodos de Identificação, Análise e Solução de Problemas**. 1996. Dissertação (Mestrado em Engenharia de Produção) — Programa de Pós-Graduação em Engenharia de Produção. Universidade Federal do rio grande do Sul, Porto Alegre, RS, 1996.

ANTUNES JÚNIOR, José A. V. *et al.* **A construção do plano agregado estratégico de produção**: uma abordagem crítica e operacional. [*S. l.*]: Working Paper, 2001.

COX, James F.; SPENCER, Michael S. **The constraints management handbook**. Boca Raton, Fla.: St Lucie Press; Falls Church, Va.: APICS, 1999.

KENDAL, Gerald. **Viable vison**: transforming total sales into net profits. USA: J. Ross Publishing, 2005.

KENDALL, Gerald I. **Securing the future**: strategies for exponential growth using the theory of constraints. Boca Raton: St Lucie Press/APICS, 1998.

KLAPHOLZ, Richard; KLARMAN, Alex. **The cash machine**: using the theory of constraints for sales management. [S. l.]: North River, 2004.

NEWBOLD, Robert C. **Project management in the fast lane**: applying the theory of constraints. Boca Raton: St Lucie Press/APICS, 1998.

NUNES JÚNIOR, Hener de Souza. **Uma avaliação crítica do programa visão viável da teoria das restrições**. 2007. Dissertação (Mestrado em Engenharia de Produção) — Programa de Pós-Graduação em Engenharia de Produção e Sistemas. Universidade do vale do Rio dos Sinos, Unisinos, São Leopoldo, 2007.

RODRIGUES, L. H. Apresentação e Análise Crítica da Tecnologia da Produção Otimizada (OptimizedProduction Technology - OPT) e da Teoria das Restrições (TheoryofConstraints – TOC). *In*: ENCONTRO DA ASSOCIAÇÃO NACIONAL DE PROGRAMAS DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO, 14., 1990, Florianópolis/SC. **Anais...** Santa Catarina: ANPAD, 1990.

SCHEINKOPF, Lisa. **Thinking for a change**: putting the TOC thinking process to use. Boca Raton: St Lucie Press /APICS, 1999.

SMITH, Debra. **The measurement nightmare**: how the theory of constraint can resolve conflicting strategies, policies and measures. Boca Raton: St Lucie Press/APICS, 2000.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível:

Mestrado

Doutorado

Disciplina: Sistemas Integrados de Manufatura

Semestre: 2020/1 Carga horária: 45 h/a - Créditos: 03

Professor: Miguel Afonso Sellitto Código da disciplina: 115522 / 108388

EMENTA

Modelos e parametrização de sistemas de manufatura; Lay-outs e Flexibilidade na Manufatura; Manufatura integrada por computador; Desenvolvimento de produto em manufatura; Tecnologia empregada em SFM; Gerenciamento da manutenção em SFM; Heurísticas em SFM.

CONTEÚDO PROGRAMÁTICO

Modelos e parametrização de sistemas de manufatura: modelo do funil, Conwip, modelos de filas, redes de Petri, uso de simulação computacional. Lay-outs e Flexibilidade na Manufatura: definição de flexibilidade, tipologia de flexibilidade, armazenagem em SFM, abastecimento em SFM, células de fabricação, linhas transfer. Manufatura integrada por computador: CIM, CAD, CAE, CAPP, CAM. Desenvolvimento de produto em manufatura: Lógicas de desenvolvimento de produto em manufatura, Engenharia apoiada por computador, Prototipagem virtual, ensaios acelerados em laboratório e virtuais. Tecnologia empregada em SFM: Robótica, AGV's, Transelevadores, automação de campo (CNC, CLP, DNC, SDCD), sistemas especialistas e inteligência artificial, lógicas neuro-fuzzy de controle avançado; Gerenciamento da manutenção em SFM: Modelagem de tempos até a falha e tempos até o reparo, confiabilidade, manutenibilidade, disponibilidade, estratégia de manutenção baseada na taxa de falha, projeto de máquinas voltado à disponibilidade. Heurísticas em SFM: formação de células de fabricação, tecnologia de grupo, otimização de rotas de AVG's, otimização de uso de transelevadores, otimização da sequência de produção em robótica.

METODOLOGIA

Aulas expositivas, pesquisa na literatura, estudos de caso, pesquisa de campo.

AVALIAÇÃO

50% arguição e defesa presencial de leituras recomendadas e 50% produção de artigo científico inédito para remessa a periódico da lista Qualis da CAPES, classificado no mínimo como B3 em Engenharia III.

BIBLIOGRAFIA BÁSICA

BASNET, C.; MIZE, J. Scheduling and control of flexible manufacturing systems: a critical Review. **Working Paper**, New Zealand, 7:6, 340-355, DOI: 10.1080/09511929408944622. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/09511929408944622

BITRAN, G. R.; MORABITO, R. Um exame dos modelos de redes de filas abertas aplicados a sistemas de manufatura discretos: parte I. **Gestão & Produção**, [s. l.], v. 2, n. 2, p. 192-219, 1995.

BITRAN, G. R.; MORABITO, R. Um exame dos modelos de redes de filas abertas aplicados a sistemas de manufatura discretos: parte II. **Gestão & Produção**, [s. l.], v. 2, n. 3, p. 297-320, 1995.

BREITHAUPT, J.; LAND, M.; NYHUIS, P. The workload control concept: theory and practical extensions of Load Oriented Order Release. **Production Planning & Control**, [s. l.], v. 13, n. 7, p. 625-638, 2002.

FACCHIN, T.; SELLITTO, M. Medição do inventário em processo e tempo de atravessamento em manufatura por modelagem em redes de Petri e diagrama de resultados. **Gestão & Produção**, [s. l.], v. 15, n. 2, p. 307-321, 2008.

GROOVER, M. Automação industrial e sistemas de manufatura. São Paulo: Pearson, 2011.

KIOON, S.; BULGAK, A.; BEKTAS, T. Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. **European Journal of Operational Research**, [s. l.], v. 192, n. 2, p. 414-428, 2009.

SELLITTO, M. *et al.* A Fuzzy Logic Control application to the Cement Industry. **IFAC-PAPERSONLINE**, v. 51, p. 1542-1547, 2018.

SELLITTO, M. Formulação estratégica da manutenção industrial com base na confiabilidade dos equipamentos. **Produção**, [s. l.], v. 15, n. 1, p. 44-59, 2005.

SELLITTO, M. Lead-time, inventory, and safety stock calculation in job-shop manufacturing. **Acta Polytechnica**, [s. l.], v. 58, n. 6, p. 1-10, 2018.

SELLITTO, M.; BALUGANI, E.; LOLLI, F. Spare parts replacement policy based on chaotic models. **IFAC-PAPERSONLINE**, [s. l.], v. 51, p. 945-950, 2018.

TALAVAGE, J.; HANNAM, R. Flexible manufacturing systems in practice: applications, design, and simulation. New York: Marcel Dekker, 1988.

YIN, Y. Application similarity coefficient method to cellular manufacturing. *In*: KORDIC, V.; LAZINICA, A.; MERDAN, M. (org.). **Manufacturing the Future**. Wien: InTechInTech - Open

Access Publisher, 2006. Disponível em: https://pdfs.semanticscholar.org/bdd2/75c75d06b534fcdc3322940699e7738ec803.pdf

BIBLIOGRAFIA COMPLEMENTAR

AVONTS, L.; WASSENHOVE, L. The part mix and routing mix problem in FMS: a coupling between an LP model and a closed queuing network. **International Journal of Production Research**, [s. l.], v. 26, n.12, p.1891-1902, 1988.

BITRAN, G.; SARKAR, D. Throughput analysis in manufacturing networks. **European Journalof Operational Research**, [s. l.], v. 74, n. 3, p. 448-465, 1994.

BUZACOTT, J.; YAO, D. Flexible manufacturing systems: a review of analytical models. **Management Science**, [s. l.], v. 32, n. 7, p. 890-905, 1986.

GROOVER, M. Fundamentals of modern manufacturing. River Street, NJ: Wiley, 2007.

LIU, S. A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. **Computers & Industrial Engineering**, [s. l.], v. 54, n. 1, p. 66-76, 2008.

MIRELES, C.; NORIEGA, A.; LEYVA, G. Flexible manufacturing system simulation using petri nets. *In*: KORDIC, V.; LAZINICA, A.; MERDAN, M. (org.). **Manufacturing the future**. Wien: InTechInTech - Open Access Publisher, 2006. Disponível em: http://www.intechopen.com/books/show/title/manufacturing_the_future.

PASSOS, C.; SILVA FILHO, O. Modelos analíticos para avaliação de sistemas flexíveis de manufatura. **Gestão & Produção**, [s. l.], v. 1, n. 3, p. 290-304, 1994.

RAUSAND, M.; HOYLAND, A. **System reliability theory**: models, statistical methods and applications. New Jersey: Wiley, 2004.

RIBEIRO, J.; FOGLIATTO, F. **Manutenção e confiabilidade industrial**. Rio de Janeiro: Campus Elsevier, 2009.

SILVA, C.; MORABITO, R. Aplicação de modelos de redes de filas abertas no planejamento do sistema job-shop de uma planta metal-mecânica. **Gestão & Produção**, [s. l.], v. 14, n. 2, p. 393-410, 2007.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível: Mestrado Doutorado

Disciplina: Tópicos Avançados em Engenharia de Produção e Sistemas – Modelagem para Aprendizagem I

Semestre: 2020/1 Carga horária: 15h/a - Créditos: 01

Professor: Prof.^a Dr.^a Daniel Pacheco Lacerda Código da disciplina: 115533_T15/115552_T15

EMENTA

Apresentação e discussão de temas avançados, atuais e/ou emergentes, baseados em resultados de projetos de pesquisa dos professores do corpo permanente ou professores visitantes do PPGEPS, tratando de assuntos ligados aos temas de Tese de Doutorado e conteúdos relacionados às linhas de pesquisa do programa, não contemplados nas demais disciplinas do curso.

CONTEÚDO PROGRAMÁTICO

- Conceitos elementares a Modelagem para Aprendizagem no contexto dos Sistemas Produtivos e da Gestão de Operações.
- Estruturação de projetos de pesquisa de natureza indutiva a partir da modelagem para aprendizagem.
- Estruturação de projetos de pesquisa de natureza hipotético-dedutiva a partir da modelagem para aprendizagem.
- Estruturação de projetos de pesquisa de natureza prescritiva a partir da modelagem para aprendizagem
- Explicitação e integração entre as lógicas do Mundo 1, Mundo 2 e Mundo 3 de Karl Popper.
- Bases ontologicas e epistemológicas em Design Science e Design Science Research;
- Estruturação de Revisão Análise e Síntese da Literatura como base de geração do conhecimento no Mundo 3.
- Modelagem de Data EnvelopmentAnalysis.

OBJETIVOS

Ao final da disciplina o aluno será capaz de:

• Compreender o que significa a modelagem para a aprendizagem no contexto dos sistemas produtivos e da gestão de operações;

- Estruturar projetos de pesquisa científica e aplicada para o contexto acadêmico e empresarial;
- Revisar, selecionar e analisar a criticamente a literatura refletir criticamente e desenvolver oportunidades de pesquisa a partir do raciocínio abdutivo;
- Desenvolver pensamento crítico e investigativo sobre o tema, bem como a habilidade de selecionar a melhor abordagem de pesquisa para cada contexto prático das organizações.

Exposições dialogadas, palestras, seminários, estudos de caso, discussões de filmes e dinâmicas de grupo, aulas expositivas.

AVALIAÇÃO

As avaliações considerarão o grau de conhecimento apresentado pelo participante, sua evolução através das atividades, também em termos de habilidades e/ou atitudes, e, a relevância das participações e consistência das contribuições apresentadas. Serão utilizados os seguintes instrumentos de avaliação: Seminários (individual - 30% da nota) e Elaboração de um Projetos de Pesquisa no âmbito da modelagem para aprendizagem (individual - 70% da nota).

BIBLIOGRAFIA BÁSICA

DRESCH, A.; LACERDA, D. P.; ANTUNES Jr., J. A. V. **Design science research**: método de pesquisa para o avanço da ciência e tecnologia. 1. ed. Porto Alegre: Bookman, 2015.

DRESCH, A.; LACERDA, D. P.; MIGUEL, P. A. C. Design science in operations management: conceptual foundations and literature analysis. **Brazilian Journal of Operations & Production Management**, [s. l.], v. 16, p. 333-346, 2019.

MORANDI, M. I. W. M.; CAMARGO, L. F. R. Systematic Literature Review. *In*: DRESCH, A.; LACERDA, D. P.; ANTUNES JR, J. A. V. (ed.). **Design science research**: a method for science and technology advancement. London: Springer, 2015. p. 161.

PIDD, M. **Modelagem empresarial**: ferramentas para tomada de decisão. Porto Alegre: Bookman, 1998.

PIRAN, F. A.; LACERDA, D. P.; CAMARGO, L. F. R. **Análise e gestão da eficiência**. 1. ed. Rio de Janeiro: Elsevier, 2018.

POPPER, Karl R. **Objective knowledge**: an evolutionary approach. 1. ed. New York: Oxford University Press, 1972. 390 p.

STERMAN, J. **Business dynamics**: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill, c2000.

STERMAN, J. D. All models are wrong: reflections on becoming a systems scientist. **System Dynamics Review**, [s. l.], v. 18, n. 4, p. 501-531, 2002.

BIBLIOGRAFIA COMPLEMENTAR

AKEN, J. E. van; BERENDS, H.; BIJ, H. van der. **Problem solving in organizations**: a methodological handbook for business and management students. 2. ed. Cambridge: University Press Cambridge, 2012.

BOOTH, W. C.; COLOMB, G. G.; WILLIAMS, J. M. **The craft of research**. Chicago: The University of Chicago, 2008.

DRESCH, A.; LACERDA, D. P.; CAUCHICK-MIGUEL, P. A. A distinctive analysis of case study, action research and design science research. **Revista Brasileira de Gestão de Negócios**, São Paulo, v. 17, n. 56, p. 1116-1133, 2015.

DUBE, L.; PARE, G. Rigor in information systems positivist case research: current practices, trends and recommendations. **MIS Quarterly**, [s. l.], v. 27, n. 4, 2003.

GIBBONS, M.; LIMOGES, C.; NOWOTNY, H. *et al.* **The new production of knowledge**: the dynamics of science and research in contemporary societies. Great Britain: Sage Publications Ltd, 1994.

POPPER, K.; ECCLES, J. C. The self and its brain. 2nd ed. Berlin: Springer, 1985.

SIMON, H. A. As ciências do artificial. Coimbra: Armênio Amado, 1981.

VOSS, C.; TSIKRIKTSIS, N.; FROHLICH, M. Case research in operations management. **International Journal of Operations & Production Management**, [s. l.], v. 22, n. 2, p. 195-219, 2002.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível: Mestrado Doutorado

Disciplina: Tópicos Avançados em Engenharia de Produção e Sistemas – Modelagem para Aprendizagem II

Semestre: 2020/1 Carga horária: 15h/a - Créditos: 01

Professor: Prof.^a Dr.^a Daniel Pacheco Lacerda Código da disciplina: 115533_T16/115552_T16

EMENTA

Apresentação e discussão de temas avançados, atuais e/ou emergentes, baseados em resultados de projetos de pesquisa dos professores do corpo permanente ou professores visitantes do PPGEPS, tratando de assuntos ligados aos temas de Tese de Doutorado e conteúdos relacionados às linhas de pesquisa do programa, não contemplados nas demais disciplinas do curso.

CONTEÚDO PROGRAMÁTICO

- Conceitos elementares a Modelagem para Aprendizagem no contexto dos Sistemas Produtivos e da Gestão de Operações.
- Estruturação de projetos de pesquisa de natureza indutiva a partir da modelagem para aprendizagem.
- Estruturação de projetos de pesquisa de natureza hipotético-dedutiva a partir da modelagem para aprendizagem.
- Estruturação de projetos de pesquisa de natureza prescritiva a partir da modelagem para aprendizagem
- Explicitação e integração entre as lógicas do Mundo 1, Mundo 2 e Mundo 3 de Karl Popper.
- Bases ontologicas e epistemológicas em Design Science e Design Science Research;
- Estruturação de Revisão Análise e Síntese da Literatura como base de geração do conhecimento no Mundo 3.
- Modelagem de Data EnvelopmentAnalysis.

OBJETIVOS

Ao final da disciplina o aluno será capaz de:

• Compreender o que significa a modelagem para a aprendizagem no contexto dos sistemas produtivos e da gestão de operações;

- Estruturar projetos de pesquisa científica e aplicada para o contexto acadêmico e empresarial;
- Revisar, selecionar e analisar a criticamente a literatura refletir criticamente e desenvolver oportunidades de pesquisa a partir do raciocínio abdutivo;
- Desenvolver pensamento crítico e investigativo sobre o tema, bem como a habilidade de selecionar a melhor abordagem de pesquisa para cada contexto prático das organizações.

Exposições dialogadas, palestras, seminários, estudos de caso, discussões de filmes e dinâmicas de grupo, aulas expositivas.

AVALIAÇÃO

As avaliações considerarão o grau de conhecimento apresentado pelo participante, sua evolução através das atividades, também em termos de habilidades e/ou atitudes, e, a relevância das participações e consistência das contribuições apresentadas. Serão utilizados os seguintes instrumentos de avaliação: Seminários (individual - 30% da nota) e Elaboração de um Projetos de Pesquisa no âmbito da modelagem para aprendizagem (individual - 70% da nota).

BIBLIOGRAFIA BÁSICA

DRESCH, A.; LACERDA, D. P.; ANTUNES Jr., J. A. V. **Design science research**: método de pesquisa para o avanço da ciência e tecnologia. 1. ed. Porto Alegre: Bookman, 2015.

DRESCH, A.; LACERDA, D. P.; MIGUEL, P. A. C. Design science in operations management: conceptual foundations and literature analysis. **Brazilian Journal of Operations & Production Management**, [s. l.], v. 16, p. 333-346, 2019.

MORANDI, M. I. W. M.; CAMARGO, L. F. R. Systematic Literature Review. *In*: DRESCH, A.; LACERDA, D. P.; ANTUNES JR, J. A. V. (ed.). **Design science research**: a method for science and technology advancement. London: Springer, 2015. p. 161.

PIDD, M. **Modelagem empresarial**: ferramentas para tomada de decisão. Porto Alegre: Bookman, 1998.

PIRAN, F. A.; LACERDA, D. P.; CAMARGO, L. F. R. **Análise e gestão da eficiência**. 1. ed. Rio de Janeiro: Elsevier, 2018.

POPPER, Karl R. **Objective knowledge**: an evolutionary approach. 1. ed. New York: Oxford University Press, 1972. 390 p.

STERMAN, J. **Business dynamics**: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill, 2000.

STERMAN, J. D. All models are wrong: reflections on becoming a systems scientist. **System Dynamics Review**, [s. l.], v. 18, n. 4, p. 501-531, 2002.

BIBLIOGRAFIA COMPLEMENTAR

BOOTH, W. C.; COLOMB, G. G.; WILLIAMS, J. M. **The craft of research**. Chicago: The University of Chicago, 2008.

DRESCH, A.; LACERDA, D. P.; CAUCHICK-MIGUEL, P. A. A distinctive analysis of case study, action research and design science research. **Revista Brasileira de Gestão de Negócios**, São Paulo, v. 17, n. 56, p. 1116-1133, 2015.

DUBE, L.; PARE, G. Rigor in information systems positivist case research: current practices, trends and recommendations. **MIS Quarterly**, [s. l.], v. 27, n. 4, 2003.

GIBBONS, M. *et al.* **The new production of knowledge**: the dynamics of science and research in contemporary societies. London; Thousand Oaks, Calif.: SAGE Publications, 1994

POPPER, K.; ECCLES, J. C. The self and its brain. 2nd ed. Berlin: Springer, 1985.

SIMON, H. A. As ciências do artificial. Coimbra: Armênio Amado, 1981.

VAN AKEN, J. E.; BERENDS, H.; BIJ, H. VAN DER. **Problem solving in organizations**: a methodological handbook for business and management students. 2. ed. Cambridge: University Press Cambridge, 2012.

VOSS, C.; TSIKRIKTSIS, N.; FROHLICH, M. Case research in operations management. **International Journal of Operations & Production Management**, [s. l.], v. 22, n. 2, p. 195-219, 2002.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível: Mestrado Doutorado

Disciplina: Tópicos Avançados em Engenharia de Produção e Sistemas – Modelagem para Aprendizagem III

Semestre: 2020/1 Carga horária: 15h/a - Créditos: 01

Professor: Prof.^a Dr.^a Daniel Pacheco Lacerda Código da disciplina: 115533_T17/ 115552_T17

EMENTA

Apresentação e discussão de temas avançados, atuais e/ou emergentes, baseados em resultados de projetos de pesquisa dos professores do corpo permanente ou professores visitantes do PPGEPS, tratando de assuntos ligados aos temas de Tese de Doutorado e conteúdos relacionados às linhas de pesquisa do programa, não contemplados nas demais disciplinas do curso.

CONTEÚDO PROGRAMÁTICO

- Conceitos elementares a Modelagem para Aprendizagem no contexto dos Sistemas Produtivos e da Gestão de Operações.
- Estruturação de projetos de pesquisa de natureza indutiva a partir da modelagem para aprendizagem.
- Estruturação de projetos de pesquisa de natureza hipotético-dedutiva a partir da modelagem para aprendizagem.
- Estruturação de projetos de pesquisa de natureza prescritiva a partir da modelagem para aprendizagem
- Explicitação e integração entre as lógicas do Mundo 1, Mundo 2 e Mundo 3 de Karl Popper.
- Bases ontologicas e epistemológicas em Design Science e Design Science Research;
- Estruturação de Revisão Análise e Síntese da Literatura como base de geração do conhecimento no Mundo 3.
- Modelagem de Data EnvelopmentAnalysis.

OBJETIVOS

Ao final da disciplina o aluno será capaz de:

• Compreender o que significa a modelagem para a aprendizagem no contexto dos sistemas produtivos e da gestão de operações;

- Estruturar projetos de pesquisa científica e aplicada para o contexto acadêmico e empresarial;
- Revisar, selecionar e analisar a criticamente a literatura refletir criticamente e desenvolver oportunidades de pesquisa a partir do raciocínio abdutivo;
- Desenvolver pensamento crítico e investigativo sobre o tema, bem como a habilidade de selecionar a melhor abordagem de pesquisa para cada contexto prático das organizações.

Exposições dialogadas, palestras, seminários, estudos de caso, discussões de filmes e dinâmicas de grupo, aulas expositivas.

AVALIAÇÃO

As avaliações considerarão o grau de conhecimento apresentado pelo participante, sua evolução através das atividades, também em termos de habilidades e/ou atitudes, e, a relevância das participações e consistência das contribuições apresentadas. Serão utilizados os seguintes instrumentos de avaliação: Seminários (individual - 30% da nota) e Elaboração de um Projetos de Pesquisa no âmbito da modelagem para aprendizagem (individual - 70% da nota).

BIBLIOGRAFIA BÁSICA

DRESCH, A.; LACERDA, D. P.; ANTUNES JR., J. A. V. **Design science research**: método de pesquisa para o avanço da ciência e tecnologia. 1. ed. Porto Alegre: Bookman, 2015.

DRESCH, A.; LACERDA, D. P.; MIGUEL, P. A. C. Design science in operations management: conceptual foundations and literature analysis. **Brazilian Journal of Operations & Production Management**, [s. l.], v. 16, p. 333-346, 2019.

MORANDI, M. I. W. M.; CAMARGO, L. F. R. Systematic literature review. *In*: DRESCH, A.; LACERDA, D. P.; ANTUNES JR, J. A. V. (ed.). **Design science research a method for science and technology advancement**. London: Springer, 2015. p. 161.

PIDD, M. **Modelagem empresarial**: ferramentas para tomada de decisão. Porto Alegre: Bookman, 1998.

PIRAN, F. A.; LACERDA, D. P.; CAMARGO, L. F. R. **Análise e gestão da eficiência**. 1. ed. Rio de Janeiro: Elsevier, 2018.

POPPER, Karl R. **Objective knowledge**: an evolutionary approach. 1. ed. New York: Oxford University Press, 1972. 390 p.

STERMAN, J. **Business dynamics**: systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill, c2000.

STERMAN, J. D. All models are wrong: reflections on becoming a systems scientist. **System Dynamics Review**, [s. l.], v. 18, n. 4, p. 501-531, 2002.

BIBLIOGRAFIA COMPLEMENTAR

BOOTH, W. C.; COLOMB, G. G.; WILLIAMS, J. M. **The craft of research**. Chicago: The University of Chicago, 2008.

DRESCH, A.; LACERDA, D. P.; CAUCHICK-MIGUEL, P. A. A distinctive analysis of case study, action research and design science research. **Revista Brasileira de Gestão de Negócios**, São Paulo, v. 17, n. 56, p. 1116-1133, 2015.

DUBE, L.; PARE, G. Rigor in information systems positivist case research: current practices, trends and recommendations. **MIS Quarterly**, [s. l.], v. 27, n. 4, p. 597-636, 2003.

GIBBONS, M. *et al.* **The new production of knowledge**: the dynamics of science and research in contemporary societies. Great Britain: Sage Publications Ltd, 1994.

POPPER, K.; ECCLES, J. C. The self and its brain. 2nd ed. Berlin: Springer, 1985.

SIMON, H. A. As ciências do artificial. Coimbra: Armênio Amado, 1981.

VAN AKEN, J. E.; BERENDS, H.; BIJ, H. VAN DER. **Problem solving in organizations**: a methodological handbook for business and management students. 2. ed. Cambridge: University Press Cambridge, 2012.

VOSS, C.; TSIKRIKTSIS, N.; FROHLICH, M. Case research in operations management. **International Journal of Operations & Production Management**, [s. l.], v. 22, n. 2, p. 195-219, 2002.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível:

Mestrado

Doutorado

Disciplina: Tópicos Avançados em Engenharia de Produção e Sistemas - Teoria Constructal e Design I

Semestre: 2020/1 Carga horária: 15h/a - Créditos: 01

Professor: Luiz Alberto Oliveira Rocha Código da disciplina:115533_T18/115552_T06

EMENTA

Apresentação e discussão de temas avançados, atuais e/ou emergentes, baseados em resultados de projetos de pesquisa dos professores do corpo permanente ou professores visitantes do PPGEPS, tratando de assuntos ligados aos temas de Tese de Doutorado e conteúdos relacionados às linhas de pesquisa do programa, não contemplados nas demais disciplinas do curso.

CONTEÚDOS PROGRAMÁTICOS

Conceitos Fundamentais.

Sistemas onde há escoamento.

Imperfeições.

Configurações de Escoamentos Simples.

Configurações para Escoamento de Fluidos.

Configurações para Condução de Calor.

Configurações para Convecção Forçada e Natural.

Configurações Multi-escala.

Sistemas distribuídos de energia.

OBJETIVOS

- Apresentar aos alunos os principais conceitos de Teoria Constructal
- Ensinar como aplicar o Método Constructal Design para a determinação de configurações que facilitem o escoamento.
- Apresentar exemplos e estudos de caso que permitam aos alunos praticar os conhecimentos adquiridos.

As aulas serão expositivas utilizando o quadro e também projeção de slides. Os alunos também resolverão listas de exercícios e apresentarão trabalhos solicitados pelo professor. As listas e trabalhos receberão avaliação.

AVALIAÇÃO

Avaliação de trabalhos realizados pelos alunos periodicamente.

BIBLIOGRAFIA BÁSICA

BEJAN, A. Advanced engineering thermodynamics. 3rd ed. New Jersey: Wiley, 2006.

BEJAN, A. Convection heat transfer. 3rd ed. Hoboken, N. J.: Wiley, c2004.

BEJAN, A. **Shape and structure, from engineering to nature**. New York: Cambridge University Press, 2000.

BEJAN, A.; LORENTE, S. Design with constructal theory. New Jersey: Wiley, 2008.

BEJAN, A.; ZANE, J. P. Design in nature. New York: Doubleday, 2012.

ROCHA, L. A. O.; LORENTE, S.; BEJAN, A. Constructal law and the unifying principle of design. New York: Springer-Verlag, 2013.

ROCHA, L. Convection in channels and porous media: analysis, optimization and constructal design. Deutschland: VDM Verlag, 2009.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível:

Mestrado

Doutorado

Disciplina: Tópicos Avançados em Engenharia de Produção e Sistemas - Teoria Constructal e Design II

Semestre: 2020/1 Carga horária: 15h/a - Créditos: 01

Professor: Luiz Alberto Oliveira Rocha Código da disciplina:115533_T19/115552_T07

EMENTA

Apresentação e discussão de temas avançados, atuais e/ou emergentes, baseados em resultados de projetos de pesquisa dos professores do corpo permanente ou professores visitantes do PPGEPS, tratando de assuntos ligados aos temas de Tese de Doutorado e conteúdos relacionados às linhas de pesquisa do programa, não contemplados nas demais disciplinas do curso.

CONTEÚDOS PROGRAMÁTICOS

Conceitos Fundamentais.

Sistemas onde há escoamento.

Imperfeições.

Configurações de Escoamentos Simples.

Configurações para Escoamento de Fluidos.

Configurações para Condução de Calor.

Configurações para Convecção Forçada e Natural.

Configurações Multi-escala.

Sistemas distribuídos de energia.

OBJETIVOS

- Apresentar aos alunos os principais conceitos de Teoria Constructal
- Ensinar como aplicar o Método Constructal Design para a determinação de configurações que facilitem o escoamento.
- Apresentar exemplos e estudos de caso que permitam aos alunos praticar os conhecimentos adquiridos.

As aulas serão expositivas utilizando o quadro e também projeção de slides. Os alunos também resolverão listas de exercícios e apresentarão trabalhos solicitados pelo professor. As listas e trabalhos receberão avaliação.

AVALIAÇÃO

Avaliação de trabalhos realizados pelos alunos periodicamente.

BIBLIOGRAFIA BÁSICA

BEJAN, A. Advanced engineering thermodynamics. 3rd ed. New Jersey: Wiley, 2006.

BEJAN, A. Convection heat transfer. 3rd ed. Hoboken, N. J.: Wiley, c2004.

BEJAN, A. **Shape and structure, from engineering to nature**. New York: Cambridge University Press, 2000.

BEJAN, A.; LORENTE, S. Design with constructal theory. New Jersey: Wiley, 2008.

BEJAN, A.; ZANE, J. P. Design in nature. New York: Doubleday, 2012.

ROCHA, L. A. O.; LORENTE, S.; BEJAN, A. Constructal law and the unifying principle of design. New York: Springer-Verlag, 2013.

ROCHA, L. Convection in channels and porous media: analysis, optimization and constructal design. Deutschland: VDM Verlag, 2009.

Programa de Pós-Graduação em Engenharia de Produção e Sistemas

Nível:

Mestrado

Doutorado

Disciplina: Tópicos Avançados em Engenharia de Produção e Sistemas - Teoria Constructal e Design III

Semestre: 2020/1 Carga horária: 15h/a - Créditos: 01

Professor: Luiz Alberto Oliveira Rocha Código da disciplina:115533_T20/115552_T08

EMENTA

Apresentação e discussão de temas avançados, atuais e/ou emergentes, baseados em resultados de projetos de pesquisa dos professores do corpo permanente ou professores visitantes do PPGEPS, tratando de assuntos ligados aos temas de Tese de Doutorado e conteúdos relacionados às linhas de pesquisa do programa, não contemplados nas demais disciplinas do curso.

CONTEÚDOS PROGRAMÁTICOS

Conceitos Fundamentais.

Sistemas onde há escoamento.

Imperfeições.

Configurações de Escoamentos Simples.

Configurações para Escoamento de Fluidos.

Configurações para Condução de Calor.

Configurações para Convecção Forçada e Natural.

Configurações Multi-escala.

Sistemas distribuídos de energia.

OBJETIVOS

- Apresentar aos alunos os principais conceitos de Teoria Constructal
- Ensinar como aplicar o Método Constructal Design para a determinação de configurações que facilitem o escoamento.
- Apresentar exemplos e estudos de caso que permitam aos alunos praticar os conhecimentos adquiridos.

As aulas serão expositivas utilizando o quadro e também projeção de slides. Os alunos também resolverão listas de exercícios e apresentarão trabalhos solicitados pelo professor. As listas e trabalhos receberão avaliação.

AVALIAÇÃO

Avaliação de trabalhos realizados pelos alunos periodicamente.

BIBLIOGRAFIA BÁSICA

BEJAN, A. Advanced engineering thermodynamics. 3rd ed. New Jersey: Wiley, 2006.

BEJAN, A. Convection heat transfer. 3rd ed. Hoboken, N. J.: Wiley, c2004.

BEJAN, A. **Shape and structure, from engineering to nature**. New York: Cambridge University Press, 2000.

BEJAN, A.; LORENTE, S. Design with constructal theory. New Jersey: Wiley, 2008.

BEJAN, A.; ZANE, J. P. Design in nature. New York: Doubleday, 2012.

ROCHA, L. A. O.; LORENTE, S.; BEJAN, A. Constructal law and the unifying principle of design. New York: Springer-Verlag, 2013.

ROCHA, L. Convection in channels and porous media: analysis, optimization and constructal design. Deutschland: VDM Verlag, 2009.